Guards
Guard
class Guard(IGuard, Generic[OT])
The Guard class.
This class is the main entry point for using Guardrails. It can be initialized by one of the following patterns:
Guard().use(...)
Guard().use_many(...)
Guard.from_string(...)
Guard.from_pydantic(...)
Guard.from_rail(...)
Guard.from_rail_string(...)
The __call__
method functions as a wrapper around LLM APIs. It takes in an LLM
API, and optional prompt parameters, and returns a ValidationOutcome
class that contains the raw output from
the LLM, the validated output, as well as other helpful information.
__init__
def __init__(*,
id: Optional[str] = None,
name: Optional[str] = None,
description: Optional[str] = None,
validators: Optional[List[ValidatorReference]] = None,
output_schema: Optional[Dict[str, Any]] = None)
Initialize the Guard with serialized validator references and an output schema.
Output schema must be a valid JSON Schema.
configure
def configure(*,
num_reasks: Optional[int] = None,
tracer: Optional[Tracer] = None,
allow_metrics_collection: Optional[bool] = None)
Configure the Guard.
Arguments:
num_reasks
int, optional - The max times to re-ask the LLM if validation fails. Defaults to None.tracer
Tracer, optional - An OpenTelemetry tracer to use for sending traces to your OpenTelemetry sink. Defaults to None.allow_metrics_collection
bool, optional - Whether to allow Guardrails to collect anonymous metrics. Defaults to None, and falls back to waht is set via theguardrails configure
command.
from_rail
@classmethod
def from_rail(cls,
rail_file: str,
*,
num_reasks: Optional[int] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None)
Create a Guard using a .rail
file to specify the output schema,
prompt, etc.
Arguments:
rail_file
- The path to the.rail
file.num_reasks
int, optional - The max times to re-ask the LLM if validation fails. Deprecatedtracer
Tracer, optional - An OpenTelemetry tracer to use for metrics and traces. Defaults to None.name
str, optional - A unique name for this Guard. Defaults togr-
+ the object id.description
str, optional - A description for this Guard. Defaults to None.
Returns:
An instance of the Guard
class.
from_rail_string
@classmethod
def from_rail_string(cls,
rail_string: str,
*,
num_reasks: Optional[int] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None)
Create a Guard using a .rail
string to specify the output schema,
prompt, etc..
Arguments:
rail_string
- The.rail
string.num_reasks
int, optional - The max times to re-ask the LLM if validation fails. Deprecatedtracer
Tracer, optional - An OpenTelemetry tracer to use for metrics and traces. Defaults to None.name
str, optional - A unique name for this Guard. Defaults togr-
+ the object id.description
str, optional - A description for this Guard. Defaults to None.
Returns:
An instance of the Guard
class.
from_pydantic
@classmethod
def from_pydantic(cls,
output_class: ModelOrListOfModels,
*,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
num_reasks: Optional[int] = None,
reask_prompt: Optional[str] = None,
reask_instructions: Optional[str] = None,
reask_messages: Optional[List[Dict]] = None,
messages: Optional[List[Dict]] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None,
output_formatter: Optional[Union[str,
BaseFormatter]] = None)
Create a Guard instance using a Pydantic model to specify the output schema.
Arguments:
output_class
- (Union[Type[BaseModel], List[Type[BaseModel]]]): The pydantic model that describes the desired structure of the output.prompt
str, optional - The prompt used to generate the string. Defaults to None.instructions
str, optional - Instructions for chat models. Defaults to None.reask_prompt
str, optional - An alternative prompt to use during reasks. Defaults to None.reask_instructions
str, optional - Alternative instructions to use during reasks. Defaults to None.reask_messages
List[Dict], optional - A list of messages to use during reasks. Defaults to None.num_reasks
int, optional - The max times to re-ask the LLM if validation fails. Deprecatedtracer
Tracer, optional - An OpenTelemetry tracer to use for metrics and traces. Defaults to None.name
str, optional - A unique name for this Guard. Defaults togr-
+ the object id.description
str, optional - A description for this Guard. Defaults to None.output_formatter
str | Formatter, optional - 'none' (default), 'jsonformer', or a Guardrails Formatter.
from_string
@classmethod
def from_string(cls,
validators: Sequence[Validator],
*,
string_description: Optional[str] = None,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
reask_prompt: Optional[str] = None,
reask_instructions: Optional[str] = None,
reask_messages: Optional[List[Dict]] = None,
messages: Optional[List[Dict]] = None,
num_reasks: Optional[int] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None)
Create a Guard instance for a string response.
Arguments:
validators
- (List[Validator]): The list of validators to apply to the string output.string_description
str, optional - A description for the string to be generated. Defaults to None.prompt
str, optional - The prompt used to generate the string. Defaults to None.instructions
str, optional - Instructions for chat models. Defaults to None.reask_prompt
str, optional - An alternative prompt to use during reasks. Defaults to None.reask_instructions
str, optional - Alternative instructions to use during reasks. Defaults to None.reask_messages
List[Dict], optional - A list of messages to use during reasks. Defaults to None.num_reasks
int, optional - The max times to re-ask the LLM if validation fails. Deprecatedtracer
Tracer, optional - An OpenTelemetry tracer to use for metrics and traces. Defaults to None.name
str, optional - A unique name for this Guard. Defaults togr-
+ the object id.description
str, optional - A description for this Guard. Defaults to None.
__call__
def __call__(
llm_api: Optional[Callable] = None,
*args,
prompt_params: Optional[Dict] = None,
num_reasks: Optional[int] = 1,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
msg_history: Optional[List[Dict]] = None,
metadata: Optional[Dict] = None,
full_schema_reask: Optional[bool] = None,
**kwargs
) -> Union[ValidationOutcome[OT], Iterable[ValidationOutcome[OT]]]
Call the LLM and validate the output.
Arguments:
llm_api
- The LLM API to call (e.g. openai.completions.create or openai.Completion.acreate)prompt_params
- The parameters to pass to the prompt.format() method.num_reasks
- The max times to re-ask the LLM for invalid output.prompt
- The prompt to use for the LLM.instructions
- Instructions for chat models.msg_history
- The message history to pass to the LLM.metadata
- Metadata to pass to the validators.full_schema_reask
- When reasking, whether to regenerate the full schema or just the incorrect values. Defaults toTrue
if a base model is provided,False
otherwise.
Returns:
ValidationOutcome
parse
def parse(llm_output: str,
*args,
metadata: Optional[Dict] = None,
llm_api: Optional[Callable] = None,
num_reasks: Optional[int] = None,
prompt_params: Optional[Dict] = None,
full_schema_reask: Optional[bool] = None,
**kwargs) -> ValidationOutcome[OT]
Alternate flow to using Guard where the llm_output is known.
Arguments:
llm_output
- The output being parsed and validated.metadata
- Metadata to pass to the validators.llm_api
- The LLM API to call (e.g. openai.completions.create or openai.Completion.acreate)num_reasks
- The max times to re-ask the LLM for invalid output.prompt_params
- The parameters to pass to the prompt.format() method.full_schema_reask
- When reasking, whether to regenerate the full schema or just the incorrect values.
Returns:
ValidationOutcome
error_spans_in_output
def error_spans_in_output() -> List[ErrorSpan]
Get the error spans in the last output.
use
@overload
def use(validator: Validator, *, on: str = "output") -> "Guard"
use
@overload
def use(validator: Type[Validator],
*args,
on: str = "output",
**kwargs) -> "Guard"
use
def use(validator: UseValidatorSpec,
*args,
on: str = "output",
**kwargs) -> "Guard"
Use a validator to validate either of the following:
- The output of an LLM request
- The prompt
- The instructions
- The message history
Arguments:
validator
- The validator to use. Either the class or an instance.on
- The part of the LLM request to validate. Defaults to "output".
use_many
@overload
def use_many(*validators: Validator, on: str = "output") -> "Guard"
use_many
@overload
def use_many(*validators: UseManyValidatorTuple,
on: str = "output") -> "Guard"
use_many
def use_many(*validators: UseManyValidatorSpec, on: str = "output") -> "Guard"
Use multiple validators to validate results of an LLM request.
validate
def validate(llm_output: str, *args, **kwargs) -> ValidationOutcome[OT]
to_runnable
def to_runnable() -> Runnable
Convert a Guard to a LangChain Runnable.
to_dict
def to_dict() -> Dict[str, Any]
json_function_calling_tool
def json_function_calling_tool(
tools: Optional[list] = None) -> List[Dict[str, Any]]
Appends an OpenAI tool that specifies the output structure using JSON Schema for chat models.
from_dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional["Guard"]
AsyncGuard
class AsyncGuard(Guard, Generic[OT])
The AsyncGuard class.
This class one of the main entry point for using Guardrails. It is initialized from one of the following class methods:
from_rail
from_rail_string
from_pydantic
from_string
The __call__
method functions as a wrapper around LLM APIs. It takes in an Async LLM
API, and optional prompt parameters, and returns the raw output stream from
the LLM and the validated output stream.
from_pydantic
@classmethod
def from_pydantic(cls,
output_class: ModelOrListOfModels,
*,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
num_reasks: Optional[int] = None,
reask_prompt: Optional[str] = None,
reask_instructions: Optional[str] = None,
reask_messages: Optional[List[Dict]] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None)
from_string
@classmethod
def from_string(cls,
validators: Sequence[Validator],
*,
string_description: Optional[str] = None,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
reask_prompt: Optional[str] = None,
reask_instructions: Optional[str] = None,
num_reasks: Optional[int] = None,
tracer: Optional[Tracer] = None,
name: Optional[str] = None,
description: Optional[str] = None)
from_dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional["AsyncGuard"]
use
def use(validator: UseValidatorSpec,
*args,
on: str = "output",
**kwargs) -> "AsyncGuard"
use_many
def use_many(*validators: UseManyValidatorSpec,
on: str = "output") -> "AsyncGuard"
__call__
async def __call__(
llm_api: Optional[Callable[..., Awaitable[Any]]] = None,
*args,
prompt_params: Optional[Dict] = None,
num_reasks: Optional[int] = 1,
prompt: Optional[str] = None,
instructions: Optional[str] = None,
msg_history: Optional[List[Dict]] = None,
metadata: Optional[Dict] = None,
full_schema_reask: Optional[bool] = None,
**kwargs
) -> Union[
ValidationOutcome[OT],
Awaitable[ValidationOutcome[OT]],
AsyncIterable[ValidationOutcome[OT]],
]
Call the LLM and validate the output. Pass an async LLM API to return a coroutine.
Arguments:
llm_api
- The LLM API to call (e.g. openai.completions.create or openai.chat.completions.create)prompt_params
- The parameters to pass to the prompt.format() method.num_reasks
- The max times to re-ask the LLM for invalid output.prompt
- The prompt to use for the LLM.instructions
- Instructions for chat models.msg_history
- The message history to pass to the LLM.metadata
- Metadata to pass to the validators.full_schema_reask
- When reasking, whether to regenerate the full schema or just the incorrect values. Defaults toTrue
if a base model is provided,False
otherwise.
Returns:
The raw text output from the LLM and the validated output.
parse
async def parse(llm_output: str,
*args,
metadata: Optional[Dict] = None,
llm_api: Optional[Callable[..., Awaitable[Any]]] = None,
num_reasks: Optional[int] = None,
prompt_params: Optional[Dict] = None,
full_schema_reask: Optional[bool] = None,
**kwargs) -> Awaitable[ValidationOutcome[OT]]
Alternate flow to using AsyncGuard where the llm_output is known.
Arguments:
llm_output
- The output being parsed and validated.metadata
- Metadata to pass to the validators.llm_api
- The LLM API to call (e.g. openai.completions.create or openai.Completion.acreate)num_reasks
- The max times to re-ask the LLM for invalid output.prompt_params
- The parameters to pass to the prompt.format() method.full_schema_reask
- When reasking, whether to regenerate the full schema or just the incorrect values.
Returns:
The validated response. This is either a string or a dictionary, determined by the object schema defined in the RAILspec.
validate
async def validate(llm_output: str, *args,
**kwargs) -> Awaitable[ValidationOutcome[OT]]
ValidationOutcome
class ValidationOutcome(IValidationOutcome, ArbitraryModel, Generic[OT])
The final output from a Guard execution.
Attributes:
call_id
- The id of the Call that produced this ValidationOutcome.raw_llm_output
- The raw, unchanged output from the LLM call.validated_output
- The validated, and potentially fixed, output from the LLM call after passing through validation.reask
- If validation continuously fails and all allocated reasks are used, this field will contain the final reask that would have been sent to the LLM if additional reasks were available.validation_passed
- A boolean to indicate whether or not the LLM output passed validation. If this is False, the validated_output may be invalid.error
- If the validation failed, this field will contain the error message
from_guard_history
@classmethod
def from_guard_history(cls, call: Call)
Create a ValidationOutcome from a history Call object.